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Abstract—RRAM based accelerators have been widely adopted
in many neuromorphic designs. However, RRAM cells are
sensitive to temperature, which changes RRAM’s conductance.
Such heat-induced interference can significantly decrease the
computational accuracy because values are functions of RRAM
conductance. In this paper, we propose HR3AM, a heat resilience
design, which improves accuracy and optimizes the thermal dis-
tribution of RRAM based neural network accelerators. HR3AM
consists of two key mechanisms: bitwidth downgrading and tile
pairing. Bitwidth downgrading re-represents weights by shifting
the conductance to improve the network inference accuracy. Tile
pairing matches hot crossbar units with pre-defined idle units to
mitigate high-temperature issues. We evaluated HR3AM on four
real world neural network models. Results show that HR3AM
improves classification accuracy by up to 41.8% compared
with current state-of-the-art designs. For thermal optimization,
HR3AM effectively decreases the maximum temperature by 6.2K
and average temperature by 6K.

I. INTRODUCTION

Neuromorphic computing has attracted increasing attentions
today because the applicable scenarios of the neural network
continue to expand. Convolutional neural networks (CNNs) are
widely adopted because of their high prediction accuracy. As
network sizes grow, general-purpose hardware platforms, such
as CPU and GPU, are insufficient for delivering decent per-
formance and power-efficiency for neuromorphic computing
applications. There have been a wide variety of neuromorphic
computing accelerators, which utilize fast and power-efficient
emerging technology to accelerate large-scale CNNs.

Resistive RAM (RRAM), or memristor, have been widely
investigated to serve as a CNN accelerator [16]. RRAM
can form a crossbar array to perform matrix multiplication
by exploiting analog characteristics of RRAM cells. Matrix
multiplications are the majority of operations in convolution.
Optimizing matrix multiplications is essential to improving the
performance of CNN. In a RRAM based CNN accelerator,
weights of the matrix are programmed into the conductance
of each RRAM cell in each crossbar. The input data is
converted to analog signals and transferred to crossbar bit-
lines. The output data is generated and converted to digital
signals on wordlines. Matrix multiplication achieves higher
speed and parallelism on RRAM crossbars than conventional
hardware [8]. RRAM crossbars also have cost and energy
efficiency advantages [16].

However, the thermal issue of RRAM crossbars potentially
reduces the inference accuracy of neural networks. Prior
work discovered RRAM conductance is sensitive to temper-
ature [18]. RRAM ON state conductance (GON) and OFF
state conductance (GOFF ) varies as the temperature changes.

The conductance range [GOFF ,GON ] sharply declines on the
hot cells. This variation drastically decreases weight precision
when it is represented in the form of conductance. When the
chip continuously operates, the accumulated heat affects more
RRAM cells. This causes many weights to be misrepresented
during inference. Eventually, neural networks suffer from loss
of accuracy. Our experiments show that the accuracy loss at
high temperature can be as high as 90%.

A few research paid attention to the problem. Most existing
works focus on handling device defects and variations in
RRAM crossbars [5], [12], [13]. However, because these
schemes are based on permanent errors from process vari-
ation, they do not dynamically adjust to the defected cells.
Temperature aware row adjustment (TARA) [4] proposed a
heat resilient design but suffers from several major drawbacks.
TARA still needs to be aware of the exact weights and
adjusts row order based on each weight’s magnitude, which
is not scalable with large scale networks. Besides, TARA
provides no optimization over thermal issue. As network size
expands, the thermal issue gets worse and row adjustment
becomes less effective. In this paper, we introduce a novel
heat resilient design HR3AM for the RRAM crossbar. HR3AM
solves the issue from two aspects: adapting weights to the
reduced conductance and optimizing chip thermal distribution.
Therefore we correspondingly propose two mechanisms in
HR3AM from these two aspects. The first mechanism bitwidth
downgrading aims to improve accuracy. It adapts weights to
the decreased conductance range by reducing bitwidth per
RRAM cell. The second mechanism tile pairing aims to tackle
the thermal issue. It optimizes the chip thermal status by
matching hot spot tiles with idle tiles. The contributions of
this paper include:

• We evaluate the impact of heat on the inference accuracy
of several large scale neural networks. Our results show
the inference accuracy of several distinguished CNNs
drop to less than 10% of theoretical accuracy.

• We propose HR3AM, which contains two mechanisms:
bitwidth downgrading and tile pairing to improve infer-
ence accuracy and tackle the thermal issue, respectively.
Bitwidth downgrading increases the accuracy of weights
represented in conductance. Tile pairing releases the heat
on hot spot tiles.

• We evaluated HR3AM with four state-of-the-art CNN
models. The results show our design guarantees 87.8%
of the theoretical inference accuracy. Our design also
shows a 6.2K decrease on maximum temperature and a
6K decrease on average temperature for the entire chip.978-1-7281-2954-9/19/$31.00 ©2019 IEEE



Package Substrate

HMC Logic Die

Tile…

RouterRouter

…eDRAM Layer

eDRAM Layer

eDRAM Layer

eDRAM Layer

Vaults

TSVs

Tile

MAC …MAC MAC MAC

Weight 

memory
Buffer

Cache

RRAM 

XbarD
A
C

S&H

ADC

S&A

…

…

RRAM 

XbarD
A
C

S&H

ADC

S&A

RRAM 

XbarD
A
C

S&H

ADC

S&A

RRAM 

XbarD
A
C

S&H

ADC

S&A

Max 

pool

Sigmoid

Fig. 1. The structure of HMC RRAM.

II. RRAM CNN ACCELERATOR

A. Architectural Overview
This work explores the RRAM CNN accelerator based on

Micro’s Hybrid Memory Cube (HMC) [10], [16]. As Figure 1
shows, the RRAM HMC structure contains multiple layers
of embedded DRAM (eDRAM) and a single logical layer
at bottom. The logic layer contains multiple tiles which are
basic computation units for handling CNN operations. Each
tile consists of multiple multiply accumulators (MACs), each
of which contains multiple RRAM crossbars for matrix multi-
plications. Tiles also include memory for synaptic weights,
caches and buffers for input and output data, a max pool
unit and a sigmoid unit [16]. The logic layer accesses DRAM
layers with Through-Silicon-Vias (TSVs). Each eDRAM layer
is divided into multiple vaults; each vault can independently
process memory accesses. Each vault has a router on the logic
die for data transitions between eDRAM and tiles.

In each MAC, RRAMs form a crossbar structure. As
Figure 5 shows, a memristor connects with a bitline and a
wordline. Each memristor has a conductance gi, j, where i
represents the bitline index and j represents the wordline
index. According to Kirchoff’s Law, the crossbar is able
to perform VO = V T

I ∗G ∗ Rs, where G is the conductance
matrix, VO and VI are output/input voltage respectively. To
compute matrix multiplications in CNN, the weight matrix is
programmed into memristors and represents G. Input data is
converted by digital to an analog convertor (DAC) and feed
into a crossbar as VI . Lastly, the wordline currents are held
by a sample-and-hold (S&H) circuit, they are fed to ADC and
the output is in the form of VO.

B. Neural Network Data Mapping on RRAM crossbar
The neural network consists of various types of layers. Most

of layers in a deep neural networks are convolutional layers
(e.g. 13 out of 16 in VGG16), which conduct a large number
of matrix multiplications. Utilizing RRAM crossbar through
matrix multiplications in the neural network can increase
parallelism and decrease latency. Encoding a weight value into
the RRAM crossbar requires conversion between the value and
the cell conductance, which follows the formula [8], where
α = Gmax−Gmin

wmax−wmin
and β = Gmax−α ∗wmax:

G = α ∗W +β (1)
α linearly scales weights to match range of conductance and
β adds the offset to remove negative values in weights. The
precision of weights is limited by the bitwidth of RRAM cells.
Single cell only achieves at most seven bits accuracy [3]. To
achieve higher precision, each weight can be programmed into
multiple RRAM cells [16].

Each layer of the neural network is serialized. Therefore we
can only perform parallel operations within the single neural
network layer. Each layer of the neural network should be
mapped to a group of RRAM tiles [16]. Because tiles belong-
ing to the different layers are independent, layers can form
a pipeline to achieve better throughput [16]. The pipelined
RRAM crossbar chip processes multiple inputs concurrently
with different layers.

C. Thermal Issues in RRAM Accelerator
RRAM cells originally obtain ON and OFF states. Each

RRAM cell can represent multiple bits by setting an inter-
mediate state that has the conductance between ON and OFF
states [8]. Each status has its unique conductance range that
does not overlap with others. However, temperature changes
has a significant impact on the RRAM conductance between
OFF and ON states [10]. Increased temperature leads to a
narrower range of conductance.
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Fig. 2. Temperature impact on (a) RRAM cell conductance and (b) CNN
applications relative inference accuracy.

Figure 2(a) depicts this effect on OFF and ON conductance
(GOFF and GON). The ON state has a weak metallic-like
characteristic [10] such that GON significantly drops as the
temperature rises. While GOFF increases with temperature
because of increased current [10]. The conductance range
[GOFF ,GON ] drops by 50% when the temperature rises from
300K to 400K. The conductance range starts to drop sharply
after 330K, which is a common operational temperature for
many chips. We observe the asymmetry of conductance vari-
ation: GON drops rapidly while the GOFF increases slowly.

The shifting conductance leads to weight misrepresentation
of the neural network. The weight conversion (Equation 1)
between weights and RRAM conductance is based on ideal
condition at room temperature. When the temperature changes,
certain weight values fall into unavailable conductance range,
the weight conversion maps these weight values to the nearest
available conductance. These weight values are misrepresented
and share conductance with others. We modeled the effect
and tested on several large scale neural networks [7], [17].
Figure 2(b) shows the relative reference accuracy of four
neural networks under 300K to 400K. To get relative accuracy,
we normalize the ReRAM generated accuracy to the software
generated accuracy. We assume entire chip is effected by
the same temperature. The accuracy drops as the tempera-
ture raises. Despite minor variance between different network
models, the inference accuracy of all experiments eventually
drop below 10% at 400K.

When pipelining multiple CNN applications, each applica-
tion runs in different layers during runtime. Because different
CNN layers have various sizes, the amount of data and
matrix multiplication operations conducted by different neural
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Fig. 3. Temperature distribution of a single RRAM chip when running
VGG16, InceptionV3 and ResNet50.

network layers varies. When each layer is bonded to certain
groups of tiles on the chip, power consumption varies between
tiles and dynamically change with time, which may cause a
non-uniform thermal distribution on RRAM chip. We generate
the steady state temperature distributions of entire RRAM chip
with three CNN models (VGG16, InceptionV3, ResNet50)
conducting inference for 10000 ImageNet [15] figures. As
Figure 3 shows, the temperature difference can be as high
as 17.16K. The distribution also shows several distinctive hot
spots. Design-time mechanisms are not sufficient to solve such
dynamic issues. Furthermore, identifying hot spot tiles and
mitigating heat on hot spot tiles could optimize the thermal
status. In the next section, we propose two mechanisms, one
can dynamically mitigate the negative impact of overheating,
and the other can reduce hotspots on the RRAM chip.

III. HR3AM DESIGN

A. HR3AM Overview
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Fig. 4. Overview of HR3AM structure.

To handle thermal issue imposed inference accuracy loss,
we propose HR3AM, a heat resilient design for RRAM based
CNN accelerators. Figure 4 shows an overview of HR3AM.
When running CNN applications, HR3AM monitors the dy-
namic thermal distribution of the RRAM chip. We adopt
the temperature sensor design in commercial processors [14],
which provides temperature detection of each crossbar unit.
HR3AM provides two heat resilient methods, heat-resilient
weight adjustment and dynamic thermal management, to op-
timize inference accuracy and temperature distribution re-
spectively. For heat-resilient weight adjustment, we introduce
a mechanism, called bitwidth downgrading, to dynamically
change the bitwidth of RRAM cells. Downgrading bitwidth
of hot RRAM cells would trade the precision of influenced
weights for mis-representation of weights caused by conduc-
tance range reduction. For dynamic thermal management, we
propose the tile pairing to move a portion of operations in hot
tiles to pre-allocated idle tiles. Hence, the power consumption
of hot tiles would be reduced to release heat. The following
of this section discusses details of these two methods.

B. Heat-resilient Weight Adjustment

Bitwidth Downgrading. As we discussed in Section II-C,
the major cause of accuracy decline is the conductance range
drop when temperature rises. Our evaluation shows CNN
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Fig. 5. Bitwidth downgrading hardware in the crossbar array.

applications have 0.9% inference accuracy loss on average
for every 1K increase on temperature. To accommodate the
shifting conductance range, we modify β and α of Equation 1.
Based on the observation that GOFF changes much less than
GON , we can get Gnew

OFF ≈ Gold
OFF . When temperature rises, the

new formula can be calculated with a new coefficient γ:

Gnew = γ ∗ (α ∗W +β ) (2)

where γ ≈ Gnew
ON

Gold
ON

. However, the RRAM conductance range,
which is divided into multiple levels to represent all the bits
states, are non-adjustable. The conductance shrinkage causes
the weight value mapped to a high conductance to be mis-
represented as a lower conductance. Instead of directly using
these misrepresented values, we propose to downgrade the
bitwidth such that converted weight can be properly mapped
into available conductance range. Bitwidth downgrading acts
as γ in Equation 2. When both weight W and parameter β shift
right N bits, the mechanism changes the conversion equation
to: Gnew = 1/2N ∗(α ∗W +β ), where N represents the number
of shifted bits.

Our design also accommodates the multiplication result
produced by adjusting weights to ensure output correctness.
We directly shift N bits back on the result using existing
shift-and-add units. The new formula for output voltage when
the bitwidth downgrading effects is as follow: VO = V T

I ∗
Gnew ∗RS ∗ 2N = (V T

I ∗RS ∗Gold/2N) ∗ 2N . The disadvantage
of this mechanism is the loss of weight accuracy. However,
bitwidth downgrading uniformly and linearly changes weights.
Therefore the ratios between different synapses’ weights are
unchanged such that calculations using bitwidth downgrading
provide better accuracy than those using misrepresented val-
ues. As we show in Section IV, bitwidth downgrading causes
much less inference accuracy loss than that of temperature
induced conductance changes.
Hardware Support. Figure 5 presents the hardware design
for bitwidth downgrading. We add a temperature register, a
comparator, a downgrade bit for each crossbar array and a
control circuit. The temperature register stores the most recent
sensed temperature of the crossbar array. The comparator
checks if the current temperature of the crossbar array exceeds
the threshold. The control signal from comparator updates the
downgrade bit to notify the crossbar to conduct bitwdith down-



grading. The weight encoding hardware reprograms weights to
the crossbar cells. We slightly modify weight encoding logic
such that the weights shift N bits left before encoding when
the downgrade bit is set. Therefore the encoded conductance
is 1

2N of the original. The adjustment on the output only
requires minor modification on the shift-and-add unit. The
control signal from the downgrade bit forces the shift-and-add
unit to shift N bits right, such that the final result expands 2N

times and matches with the output of no bitwidth downgrading.
The implementation cost consists of a temperature register,
a comparator, a downgrade bit and its control logic, and
modification to the encoding logic to support bit shifting for
each crossbar array. These are either small size storage or
simple logic circuits.
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Fig. 6. Bitwidth downgrading operation flowchart.

Bitwidth downgrading procedure. Figure 6 presents the
flowchart of the bitwidth downgrading mechanism on a cross-
bar array. At step 1 , the comparator updates the downgrade
bit based on the current temperature. Step 2 checks if the
status of the downgrade bit changes, if it is unchanged the
crossbar array directly starts multiplication by going to step
3a , while a true state leads to step 3b (bitwidth down-
grading/restoration). There are two cases in step 3b . When
the downgrade bit makes 0→ 1 change, the crossbar array
recomputes conductance with N bit shifted weights and encode
them to RRAM cells. When the bit makes 1→ 0 change, the
crossbar array conducts weight restoration: it loads original
weights and encodes them to RRAM cells. Step 3a conducts
matrix multiplication within the crossbar. Step 4 checks the
downgrade bit. A true state leads to step 5 , the crossbar array
shifts N bits back on the output using the shift-and-add unit.
The final result is forwarded to tile buffer.

The bitwidth downgrading mechanism only effects inside
the crossbar array. It requires neither the coordination between
the crossbar array and the MAC, nor the coordination be-
tween bitwidth downgraded crossbar arrays. The downgraded
weights are generated temporarily and avoid overwriting the
original copy. We only shift one bit to match the shifted
conductance in the worst case (400K) as we observed in
Section II-C. Therefore, we set N=1 across the entire design.
We choose the temperature threshold of 330K because we
observe a significantly increased accuracy decline rate after
330K on Figure 2.

C. Dynamic Thermal Management

Tile Pairing. As we demonstrate in Section II-C, thermal
distribution is not uniform on the RRAM chip. Temporally
reducing power consumption on the hot spot tiles may im-
prove the thermal status. However, conventional power saving
techniques such as decreasing frequency requires complicated
design and significantly decreases performance. Therefore,
we propose a novel approach — tile pairing to match an
overheated tile with an idle tile, while both paired tiles are
working at low power mode. In the low power mode, every
other row in one crossbar array is activated, such that only
half of the cells on a crossbar array are functioning. Based
on [16], a low power mode tile only consumes 61.8% of the
power of a full power mode tile. We pair overheated units at
the tile level. Because pairing at a finer granularity (MAC or
crossbar array) leads to overhead for tracking paired units.

We identify an overheated tile and a cooled-down tile with
collected temperature statistics. When 80% of the crossbar
arrays within an unpaired tile reach the threshold, we identify
the tile as overheated. When the percentage of the overheated
crossbar arrays in a paired tile drops below 40%, we identify
the tile as cooled-down. A cooled-down tile unpairs with its
paired tile. The paired tile resumes as an idle tile.

Xbar array

S&H

ADC

v0

VO

v1 v2N v2N+1

0/1
Pairing

bit

0/1
Master/

Slave

Tile Tile Tile

Tile Tile Tile

Tile

Paired
S&H

ADC

S&H

ADC

S&H

ADC

Data path

Control path

Fig. 7. Tile pairing (a) mechanism and (b) control logic.
Figure 7(a) demonstrates the paring mechanism. When an

overheated tile pairs with an idle tile, the hot tile is the master
tile and the idle tile is the slave tile. Every crossbar array in the
master tile pairs with a crossbar array with same index in the
slave tile. Both master and slave tiles use half of their cells to
produce the result. Two crossbar arrays use the same weights
G and same input VI . The master tile array uses even-index
columns and the master tile array uses odd-index columns.
The master tile array produces output V m

O = {v0,v2...v2N} and
the slave tile array produces output V s

O = {v1,v3...v2N+1}. The
final result is the union of the two outputs:VO =V m

O ∩V s
O, which

is constant with result generated from an unpaired crossbar.
To scatter a matrix multiplication to two tiles, we rearrange

the data placement between master and slave tiles. During
pairing, the controller transfers the weight matrix from weight
memory of the master tile to the slave tile’s. During multipli-
cation, the master and the slave tile share the input data. The
data stored in eDRAM vaults are transferred through routers.
After calculation, master tile combines outputs of two tiles.
Hardware Support. As Figure 7(b) shows, we put additional
control logic for each RRAM crossbar to support the low
power mode. We add a paring bit and a master/salve bit to
indicate the status of the tile. The crossbar array acts as normal
when the pairing bit is disabled. When the pairing bit is set,
the hot tile is set as master with master/slave bit. The idle
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Fig. 8. Inference accuracy of four neural network models.

unit is set as the slave with the same bit. On the master tile,
the control logic only enables 2N index columns, S&Hs and
ADCs are disabled accordingly as well. The slave tile only
enables 2N +1 index columns.

State-of-the-art RRAM architecture [16] does not support
dynamic scheduling of tiles. When the pipeline design al-
locates all the tiles to all the layers, certain tiles are idle
during inference but are still bonded to a network layer.
Therefore, we reserve several tiles as idle tiles and keep them
from being assigned to any network layer. The reserved tiles
potentially hurt chip performance due to loss of parallelism.
Our performance overhead evaluation in Section IV-D shows
throughput decreases only 2.1% on average.

IV. EVALUATION
A. Methodology

Our RRAM chip setup is based on a state-of-the-art archi-
tecture [16]. Our chip consists of four layers of eDRAM and
an RRAM layer. The chip operates at 1.2GHz. We build our
own RRAM based neural network accelerator simulator. Our
simulator models the RRAM conductance variation between
300K to 400K based on [18]. The simulator updates conduc-
tance according to the temperature per 100ms at the crossbar
array granularity. Our simulator obtains chip temperatures
dynamically from HotSpot [9]. The thermal characteristics of
the HMC architecture is obtained from previous work [2]. Our
thermal simulation uses a single RRAM cycle (100ns) as the
time step as described in Section III-A.

Our simulator coordinates with the Tensorflow frame-
work [1] such that it evaluates any Tensorflow based model on
RRAM crossbars. We evaluate our design with a small scale
two-layer neural network for MNIST handwritten classifica-
tion [11] and large scale neural networks (VGG16, ResNet50,
and InceptionV3) for ImageNet [6] classification. We use a
set of 60000 cases for training and 10000 cases for inference
in MNIST. For ImageNet classification networks, we use pre-
trained weights for convenience. We use 10000 pictures for
inference from Large Scale Visual Recognition Challenge [15].
We evaluate the inference accuracy with top-five prediction
results. We compare our design with two other baselines:
• No heat resilience (Base) implements a plain RRAM

chip without any heat resilient design.
• Temperature-Aware Row Adjustment (TARA) imple-

ments prior work [4] proposed scheme.
Our schemes include:
• HR3AM with Bitwidth Downgrading (HR3AM-BD)

only implements proposed bitwidth downgrading.

• HR3AM implements the both proposed bitwidth down-
grading and tile pairing mechanisms.

B. Inference accuracy

Figure 8 shows the inference accuracy of four neural net-
work models under various ambient temperatures. We scale
the ambient temperature from room temperature 300K to
360K, where RRAM chip is significantly affected by the poor
heat dissipation. We observe several findings from the results.
First, our design is resistant to the heat-induced temperature
increase. HR3AM-BP and HR3AM manage to respectively
obtain at least 83.5% and 87.8% relative accuracy among
all the cases. Second, HR3AM has relatively stable accuracy.
TARA’s accuracy drops by 40.05% on average when the
ambient temperature raises 60K. At the same time, the infer-
ence accuracy of HR3AM-BP only drops 7.77%, and that of
HR3AM only drops 4.82%. Third, networks with larger scale
and more layers obtain more benefits from HR3AM. VGG16,
ResNet50, and InceptionV3 have a larger improvement from
other baselines to our schemes than MNIST. The thermal issue
is worse on these networks. These networks have complex
structures and process large input images, which lead to
intensive data movement between tiles and eDRAM and high
power consumption. HR3AM provides further accuracy and
thermal optimization for these cases. Overall, we manage to
improve inference accuracy by 4.8%–58% over the Base and
4.3%–41.8% over TARA.

C. Thermal status
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Fig. 9. Comparison of thermal distributions of a RRAM chip when running
three networks.

We present the results of thermal status with three net-
work models: VGG16, ResNet50, and InceptionV3. Because
TARA [4] does not optimize thermal status, we only compare
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our design with the Base which has no thermal optimization.
We reserve 10% tiles as idle tiles for HR3AM.

Figure 9 presents the comparison between HR3AM and
the Base on steady-state thermal distribution. We have three
observations. First, our design significantly reduces the hot
spot region. This indicates that our design manages to identify
overheated tiles and mitigate heat for these tiles. Second, idle
tiles help mitigate heat and stay at a relatively low temperature.
However, these idle tiles form a cold spot. We can further
optimize our design by wisely distributing idle tiles across
the chip. Lastly, the released heat on hot tiles also benefits
the inference accuracy. HR3AM has a smaller percentage of
crossbar arrays that triggers bitwidth downgrading than that of
the Base, such that it brings a 2% improvement in inference
accuracy compared to HR3AM-BP.

To show the effectiveness of HR3AM during chip operation,
we measure the maximum and average temperature every
10ms across all the crossbar arrays of the chip. We measure a
total of 100ms time during steady operational state. Figure 10
shows the maximum and average temperatures during this
time. Our design limits the maximum temperature below 336K
and average temperature below 327K. HR3AM manages to
contribute a 6.2K decrease on maximum temperature and a
6K decrease on average temperature.

D. Performance and energy
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Fig. 11. Normalized (a) throughput and (b) power consumption on HR3AM.

We adopt the performance and power model from [16] to
estimate HR3AM. We normalize the results of each network
running on HR3AM to the same network running on the Base.
Figure 11(a) shows the 2.1% loss on normalized throughput.
Both weight encoding in bitwidth downgrading and reserving
idle tiles in tile pairing cause the performance downgrading.
The weight encoding process typically delays the multipli-
cation. However, it only happens when the downgrade bit
changes. In tile pairing, HR3AM reserves 10% of the tiles and

therefore loses computational parallelism. However, because
these tiles work under the low power mode, Figure 11(b)
shows a 7.7% average decrease on the normalized power.

V. CONCLUSION

In this work, we investigate how heat impacts inference
accuracy of RRAM based accelerator. Our evaluation shows
network inference accuracy drops significantly when the tem-
perature increases. We propose HR3AM, a heat resilient design
for RRAM based neural network accelerators. HR3AM con-
sists two mechanisms: bitwidth downgrading and tile pairing.
Bitwidth downgrading adjusts weights to the reduced RRAM
conductance. Tile pairing matches hot spot RRAM tiles with
idle tiles. Compared to state-of-the-art prior work, HR3AM
achieves an accuracy improvement by up to 41.8% on four real
world applications of CNN models. Our thermal evaluation
shows a 6.2K decrease on the maximum temperature and a
6K decrease on average temperature.
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